Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Biol Chem ; : 107293, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636660

RESUMO

Unsaturated fatty acid ketones with αß,γδ conjugation are susceptible to Michael addition of thiols, with unresolved issues on the site of adduction and precise structures of the conjugates. Herein we reacted 13-keto-octadecadienoic acid (13-oxo-ODE or 13-KODE) with glutathione (GSH), N-acetyl-cysteine, and ß-mercaptoethanol and identified the adducts. HPLC-UV analyses indicated none of the products exhibit a conjugated enone UV chromophore, a result that conflicts with the literature and relevant to mass spectral interpretation of 1,4 versus 1,6 thiol adduction. Aided by development of an HPLC solvent system that separates the GSH diastereomers and thus avoids overlap of signals in proton NMR experiments, we established the two major conjugates are formed by 1,6 addition of GSH at the 9-carbon of 13-oxo-ODE with the remaining double bond α to the thiol in the 10,11 position. N-acetyl cysteine reacts similarly, while ß-mercaptoethanol gives equal amounts of 1,4 and 1,6 addition products. Equine glutathione transferase catalyzed 1,6 addition of GSH to the two major diastereomers in 44:56 proportions. LC-MS in positive ion mode gives a product ion interpreted before as evidence of 1,4-thiol adduction, whereas here we find this ion using the authentic 1,6 adduct. LC-MS with negative ion APCI gave a fragment selective for 1,4 adduction. These results clarify the structures of thiol conjugates of a prototypical unsaturated keto fatty acid and have relevance to the application of LC-MS for the structural analysis of keto-fatty acid glutathione conjugation.

3.
Microbiol Spectr ; : e0047024, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501821

RESUMO

Bacterial lipoproteins are post-translationally modified by the addition of acyl chains that anchor the protein to bacterial membranes. This modification includes two ester-linked and one amide-linked acyl chain on lipoproteins from Gram-negative bacteria. Helicobacter pylori lipoproteins have important functions in pathogenesis (including delivering the CagA oncoprotein to mammalian cells) and are recognized by host innate and adaptive immune systems. The number and variety of acyl chains on lipoproteins impact the innate immune response through Toll-like receptor 2. The acyl chains added to lipoproteins are derived from membrane phospholipids. H. pylori membrane phospholipids have previously been shown to consist primarily of C14:0 and C19:0 cyclopropane-containing acyl chains. However, the acyl composition of H. pylori lipoproteins has not been determined. In this study, we characterized the acyl composition of two representative H. pylori lipoproteins, Lpp20 and CagT. Fatty acid methyl esters were prepared from both purified lipoproteins and analyzed by gas chromatography-mass spectrometry. For comparison, we also analyzed H. pylori phospholipids. Consistent with previous studies, we observed that the H. pylori phospholipids contain primarily C14:0 and C19:0 cyclopropane-containing fatty acids. In contrast, both the ester-linked and amide-linked fatty acids found in H. pylori lipoproteins were observed to be almost exclusively C16:0 and C18:0. A discrepancy between the acyl composition of membrane phospholipids and lipoproteins as reported here for H. pylori has been previously reported in other bacteria including Borrelia and Brucella. We discuss possible mechanisms.IMPORTANCEColonization of the stomach by Helicobacter pylori is an important risk factor in the development of gastric cancer, the third leading cause of cancer-related death worldwide. H. pylori persists in the stomach despite an immune response against the bacteria. Recognition of lipoproteins by TLR2 contributes to the innate immune response to H. pylori. However, the role of H. pylori lipoproteins in bacterial persistence is poorly understood. As the host response to lipoproteins depends on the acyl chain content, defining the acyl composition of H. pylori lipoproteins is an important step in characterizing how lipoproteins contribute to persistence.

5.
Artigo em Inglês | MEDLINE | ID: mdl-37336389

RESUMO

ω-Alkynyl-fatty acids can be used as probes for covalent binding to intracellular macromolecules. To inform future in vivo studies, we determined the rates of reaction of ω-alkynyl-labeled linoleate with recombinant enzymes of the skin 12R-lipoxygenase (12R-LOX) pathway involved in epidermal barrier formation (12R-LOX, epidermal lipoxygenase-3 (eLOX3), and SDR9C7). We also examined the reactivity of ω-alkynyl-arachidonic acid with representative lipoxygenase enzymes employing either "carboxyl end-first" substrate binding (5S-LOX) or "tail-first" (platelet-type 12S-LOX). ω-Alkynyl-linoleic acid was oxygenated by 12R-LOX at 62 ± 9 % of the rate compared to linoleic acid, the alkynyl-9R-HPODE product was isomerized by eLOX3 at only 43 ± 1 % of the natural substrate, whereas its epoxy alcohol product was converted to epoxy ketone linoleic by an NADH-dependent dehydrogenase (SDR9C7) with 91 ± 1 % efficiency. The results suggest the optimal approach will be application of the 12R-LOX/eLOX3-derived epoxyalcohol, which should be most efficiently incorporated into the pathway and allow subsequent analysis of covalent binding to epidermal proteins. Regarding the orientation of substrate binding in LOX catalysis, our results and previous reports suggest the ω-alkynyl group has a stronger inhibitory effect on tail-first binding, as might be expected. Beyond slowing the reaction, however, we found that the tail-first binding and transformation of ω-alkynyl-arachidonic acid by platelet-type 12S-LOX results in almost complete enzyme inactivation, possibly due to reactive intermediates blocking the enzyme active site. Overall, the results reinforce the conclusion that ω-alkynyl-fatty acids are suitable for selected applications after appropriate reactivity is established.


Assuntos
Ácidos Araquidônicos , Pele , Pele/metabolismo , Lipoxigenase/metabolismo , Ácido Linoleico/química , Ácidos Linoleicos/metabolismo , Ácidos Graxos , Ácido Araquidônico
6.
J Biol Chem ; 299(6): 104739, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37086788

RESUMO

A key requirement in forming the water permeability barrier in the mammalian epidermis is the oxidation of linoleate esterified in a skin-specific acylceramide by the sequential actions of 12R-lipoxygenase, epidermal lipoxygenase-3, and the epoxyalcohol dehydrogenase SDR9C7 (short-chain dehydrogenase-reductase family 7 member 9). By mechanisms that remain unclear, this oxidation pathway promotes the covalent binding of ceramides to protein, forming a critical structure of the epidermal barrier, the corneocyte lipid envelope. Here, we detected, in porcine, mouse, and human epidermis, two novel fatty acid derivatives formed by KOH treatment from precursors covalently bound to protein: a "polar" lipid chromatographing on normal-phase HPLC just before omega-hydroxy ceramide and a "less polar" lipid nearer the solvent front. Approximately 100 µg of the novel lipids were isolated from porcine epidermis, and the structures were established by UV-spectroscopy, LC-MS, GC-MS, and NMR. Each is a C18 fatty acid and hydroxy-cyclohexenone with the ring on carbons C9-C14 in the polar lipid and C8-C13 in the less polar lipid. Overnight culture of [14C]linoleic acid with whole mouse skin ex vivo led to recovery of the 14C-labeled hydroxy-cyclohexenones. We deduce they are formed from covalently bound precursors during the KOH treatment used to release esterified lipids. KOH-induced intramolecular aldol reactions from a common precursor can account for their formation. Discovery of these hydroxy-cyclohexenones presents an opportunity for a reverse pathway analysis, namely to work back from these structures to identify their covalently bound precursors and relationship to the linoleate oxidation pathway.


Assuntos
Ceramidas , Epiderme , Ácido Linoleico , Lipoxigenase , Animais , Humanos , Camundongos , Ceramidas/metabolismo , Epiderme/metabolismo , Ácidos Graxos/metabolismo , Ácido Linoleico/metabolismo , Ácidos Linoleicos , Suínos
7.
J Lipid Res ; 64(6): 100379, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37087101

RESUMO

Loss-of-function mutations in patatin-like phospholipase domain-containing protein 1 (PNPLA1) cause autosomal recessive congenital ichthyosis, and altered PNPLA1 activity is implicated in the pathogenesis of atopic dermatitis and other common skin diseases. To examine the hypothesis that PNPLA1 catalyzes the synthesis of acylceramides and acyl acids, we expressed and partially purified a soluble, truncated form of PNPLA1 in Escherichia coli, (PNPLA1trun) along with the related protein PNPLA2 (ATGL, adipose triglyceride lipase) and coactivator CGI-58. Liposomal substrates were incubated with recombinant enzymes for 0.5-24 h and products analyzed by HPLC-UV and LC-MS. Using trilinolein or dilinolein substrates, PNPLA1trun, like ATGLtrun, catalyzed lipolysis and acyltransferase reactions with 2-30% conversion into linoleic acid, monolinolein, and trilinolein. CGI-58 enhanced ATGL-catalyzed lipolysis as previously reported, but transacylase activity was not enhanced with ATGL or PNPLA1. In matching the proposed activity in vivo, PNPLA1 catalyzed acyl transfer from trilinolein and dilinolein donors to omega-hydroxy ceramide, omega-hydroxy glucosylceramide, and omega-hydroxy acid acceptors to form acylceramide, glucosyl-acylceramide, and acyl acid, respectively, albeit with only ∼0.05% conversion of the substrates. Notably, in experiments comparing dilinolein vs. diolein acyl donors, PNPLA1 transferred linoleate with 3:1 selectivity over oleate into acylceramide. These results support the role for PNPLA1 in the synthesis of acylceramides and acyl acids in epidermis and suggest that the enrichment of these lipids with linoleic acid could result from the substrate selectivity of PNPLA1.


Assuntos
Ictiose Lamelar , Pele , Humanos , Pele/metabolismo , Ácido Linoleico/metabolismo , Lipase/genética , Lipase/metabolismo , Epiderme/metabolismo , Ictiose Lamelar/genética , Ictiose Lamelar/metabolismo , Ceramidas/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Fosfolipases/metabolismo
8.
J Biol Chem ; 298(1): 101527, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34953854

RESUMO

Bioactive oxylipins play multiple roles during inflammation and in the immune response, with termination of their actions partly dependent on the activity of yet-to-be characterized dehydrogenases. Here, we report that human microsomal dehydrogenase reductase 9 (DHRS9, also known as SDR9C4 of the short-chain dehydrogenase/reductase (SDR) superfamily) exhibits a robust oxidative activity toward oxylipins with hydroxyl groups located at carbons C9 and C13 of octadecanoids, C12 and C15 carbons of eicosanoids, and C14 carbon of docosanoids. DHRS9/SDR9C4 is also active toward lipid inflammatory mediator dihydroxylated Leukotriene B4 and proresolving mediators such as tri-hydroxylated Resolvin D1 and Lipoxin A4, although notably, with lack of activity on the 15-hydroxyl of prostaglandins. We also found that the SDR enzymes phylogenetically related to DHRS9, i.e., human SDR9C8 (or retinol dehydrogenase 16), the rat SDR9C family member known as retinol dehydrogenase 7, and the mouse ortholog of human DHRS9 display similar activity toward oxylipin substrates. Mice deficient in DHRS9 protein are viable, fertile, and display no apparent phenotype under normal conditions. However, the oxidative activity of microsomal membranes from the skin, lung, and trachea of Dhrs9-/- mice toward 1 µM Leukotriene B4 is 1.7- to 6-fold lower than that of microsomes from wild-type littermates. In addition, the oxidative activity toward 1 µM Resolvin D1 is reduced by about 2.5-fold with DHRS9-null microsomes from the skin and trachea. These results strongly suggest that DHRS9 might play an important role in the metabolism of a wide range of bioactive oxylipins in vivo.


Assuntos
Oxilipinas , Redutases-Desidrogenases de Cadeia Curta , Animais , Leucotrieno B4/metabolismo , Camundongos , Microssomos/metabolismo , Oxilipinas/metabolismo , Prostaglandinas , Ratos , Redutases-Desidrogenases de Cadeia Curta/genética , Redutases-Desidrogenases de Cadeia Curta/metabolismo
9.
J Lipid Res ; 63(1): 100159, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34863863

RESUMO

In light of the importance of epoxyeicosatrienoic acids (EETs) in mammalian pathophysiology, a nonenzymatic route that might form these monoepoxides in cells is of significant interest. In the late 1970s, a simple system of arranging linoleic acid molecules on a monolayer on silica was devised and shown to yield monoepoxides as the main autoxidation products. Here, we investigated this system with arachidonic acid and characterized the primary products. By the early stages of autoxidation (∼10% conversion of arachidonic acid), the major products detected by LC-MS and HPLC-UV were the 14,15-, 11,12-, and 8,9-EETs, with the 5,6-EET mainly represented as the 5-δ-lactone-6-hydroxyeicosatrienoate as established by 1H-NMR. The EETs were mainly the cis epoxides as expected, with minor trans configuration EETs among the products. 1H-NMR analysis in four deuterated solvents helped clarify the epoxide configurations. EET formation in monolayers involves intermolecular reaction with a fatty acid peroxyl radical, producing the EET and leaving an incipient and more reactive alkoxyl radical, which in turn gives rise to epoxy-hydro(pero)xides and other polar products. The monolayer alignment of fatty acid molecules resembles the arrangements of fatty acids in cell membranes and, under conditions of lipid peroxidation, this intermolecular mechanism might contribute to EET formation in biological membranes.


Assuntos
Ácido Araquidônico
10.
J Lipid Res ; 62: 100094, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34171322

RESUMO

A complex assembly of lipids including fatty acids, cholesterol, and ceramides is vital to the integrity of the mammalian epidermal barrier. The formation of this barrier requires oxidation of the substrate fatty acid, linoleic acid (LA), which is initiated by the enzyme 12R-lipoxygenase (LOX). In the epidermis, unoxidized LA is primarily found in long-chain acylceramides termed esterified omega-hydroxy sphingosine (EOS)/phytosphingosine/hydroxysphingosine (collectively EOx). The precise structure and localization of LOX-oxidized EOx in the human epidermis is unknown, as is their regulation in diseases such as psoriasis, one of the most common inflammatory diseases affecting the skin. Here, using precursor LC/MS/MS, we characterized multiple intermediates of EOx, including 9-HODE, 9,10-epoxy-13-HOME, and 9,10,13-TriHOME, in healthy human epidermis likely to be formed via the epidermal LOX pathways. The top layers of the skin contained more LA, 9-HODE, and 9,10,13-TriHOME EOSs, whereas 9,10-epoxy-13-HOME EOS was more prevalent deeper in the stratum corneum. In psoriatic lesions, levels of native EOx and free HODEs and HOMEs were significantly elevated, whereas oxidized species were generally reduced. A transcriptional network analysis of human psoriatic lesions identified significantly elevated expression of the entire biosynthetic/metabolic pathway for oxygenated ceramides, suggesting a regulatory function for EOx lipids in reconstituting epidermal integrity. The role of these new lipids in progression or resolution of psoriasis is currently unknown. We also discovered the central coordinated role of the zinc finger protein transcription factor, ZIC1, in driving the phenotype of this disease. In summary, long-chain oxygenated ceramide metabolism is dysregulated at the lipidomic level in psoriasis, likely driven by the transcriptional differences also observed, and we identified ZIC1 as a potential regulatory target for future therapeutic interventions.


Assuntos
Ceramidas/biossíntese , Ácido Linoleico/biossíntese , Lipidômica , Psoríase/metabolismo , Ceramidas/química , Ceramidas/genética , Humanos , Ácido Linoleico/química , Ácido Linoleico/genética , Estrutura Molecular , Psoríase/genética
11.
J Lipid Res ; 62: 100088, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34022182

RESUMO

A proposed beneficial impact of highly unsaturated "fish oil" fatty acids is their conversion by lipoxygenase (LOX) enzymes to specialized proresolving lipid mediators, including 12/15-LOX products from EPA and DHA. The transformations of DHA include formation of docosatrienes, named for the distinctive conjugated triene of the double bonds. To further the understanding of biosynthetic pathways and mechanisms, herein we meld together biosynthesis and NMR characterization of the unstable leukotriene A (LTA)-related epoxide intermediates formed by recombinant human 15-LOX-1, along with identification of the stable enzymatic products, and extend the findings into the 12/15-LOX metabolism in resident murine peritoneal macrophages. Oxygenation of EPA by 15-LOX-1 converts the initial 15S-hydroperoxide to 14S,15S-trans-epoxy-5Z,8Z,10E,12E,17Z-EPA (appearing as its 8,15-diol hydrolysis products) and mixtures of dihydroperoxy fatty acids, while mainly the epoxide hydrolysis products are evident in the murine cells. DHA also undergoes transformations to epoxides and dihydroperoxides by 15-LOX-1, resulting in a mixture of 10,17-dihydro(pero)xy derivatives (docosatrienes) and minor 7S,17S- and 14,17S-dihydroperoxides. The 10,17S-dihydroxy hydrolysis products of the LTA-related epoxide intermediate dominate the product profile in mouse macrophages, whereas (neuro)protectin D1, the leukotriene B4-related derivative with trans,trans,cis conjugated triene, was undetectable. In this study, we emphasize the utility of UV spectral characteristics for product identification, being diagnostic of the different double bond configurations and hydroxy fatty acid functionality versus hydroperoxide. LC-MS is not definitive for configurational isomers. Secure identification is based on chromatographic retention times, comparison with authentic standards, and the highly distinctive UV spectra.


Assuntos
Araquidonato 12-Lipoxigenase/metabolismo , Araquidonato 15-Lipoxigenase/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Ácido Eicosapentaenoico/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL
12.
J Biol Chem ; 296: 100198, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33334892

RESUMO

The mammalian epoxide hydrolase (EPHX)3 is known from in vitro experiments to efficiently hydrolyze the linoleate epoxides 9,10-epoxyoctadecamonoenoic acid (EpOME) and epoxyalcohol 9R,10R-trans-epoxy-11E-13R-hydroxy-octadecenoate to corresponding diols and triols, respectively. Herein we examined the physiological relevance of EPHX3 to hydrolysis of both substrates in vivo. Ephx3-/- mice show no deficiency in EpOME-derived plasma diols, discounting a role for EPHX3 in their formation, whereas epoxyalcohol-derived triols esterified in acylceramides of the epidermal 12R-lipoxygenase pathway are reduced. Although the Ephx3-/- pups appear normal, measurements of transepidermal water loss detected a modest and statistically significant increase compared with the wild-type or heterozygote mice, reflecting a skin barrier impairment that was not evident in the knockouts of mouse microsomal (EPHX1/microsomal epoxide hydrolase) or soluble (EPHX2/sEH). This barrier phenotype in the Ephx3-/- pups was associated with a significant decrease in the covalently bound ceramides in the epidermis (40% reduction, p < 0.05), indicating a corresponding structural impairment in the integrity of the water barrier. Quantitative LC-MS analysis of the esterified linoleate-derived triols in the murine epidermis revealed a marked and isomer-specific reduction (∼85%) in the Ephx3-/- epidermis of the major trihydroxy isomer 9R,10S,13R-trihydroxy-11E-octadecenoate. We conclude that EPHX3 (and not EPHX1 or EPHX2) catalyzes hydrolysis of the 12R-LOX/eLOX3-derived epoxyalcohol esterified in acylceramide and may function to control flux through the alternative and crucial route of metabolism via the dehydrogenation pathway of SDR9C7. Importantly, our findings also identify a functional role for EPHX3 in transformation of a naturally esterified epoxide substrate, pointing to its potential contribution in other tissues.


Assuntos
Ceramidas/metabolismo , Compostos de Epóxi/metabolismo , Ácido Linoleico/metabolismo , Pele/metabolismo , Animais , Deleção de Genes , Hidrólise , Camundongos , Permeabilidade
14.
J Clin Invest ; 130(2): 890-903, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31671075

RESUMO

The corneocyte lipid envelope, composed of covalently bound ceramides and fatty acids, is important to the integrity of the permeability barrier in the stratum corneum, and its absence is a prime structural defect in various skin diseases associated with defective skin barrier function. SDR9C7 encodes a short-chain dehydrogenase/reductase family 9C member 7 (SDR9C7) recently found mutated in ichthyosis. In a patient with SDR9C7 mutation and a mouse Sdr9c7-KO model, we show loss of covalent binding of epidermal ceramides to protein, a structural fault in the barrier. For reasons unresolved, protein binding requires lipoxygenase-catalyzed transformations of linoleic acid (18:2) esterified in ω-O-acylceramides. In Sdr9c7-/- epidermis, quantitative liquid chromatography-mass spectometry (LC-MS) assays revealed almost complete loss of a species of ω-O-acylceramide esterified with linoleate-9,10-trans-epoxy-11E-13-ketone; other acylceramides related to the lipoxygenase pathway were in higher abundance. Recombinant SDR9C7 catalyzed NAD+-dependent dehydrogenation of linoleate 9,10-trans-epoxy-11E-13-alcohol to the corresponding 13-ketone, while ichthyosis mutants were inactive. We propose, therefore, that the critical requirement for lipoxygenases and SDR9C7 is in producing acylceramide containing the 9,10-epoxy-11E-13-ketone, a reactive moiety known for its nonenzymatic coupling to protein. This suggests a mechanism for coupling of ceramide to protein and provides important insights into skin barrier formation and pathogenesis.


Assuntos
Ceramidas/metabolismo , Epiderme/enzimologia , Oxirredutases/metabolismo , Animais , Catálise , Ceramidas/genética , Modelos Animais de Doenças , Doenças Genéticas Inatas/enzimologia , Doenças Genéticas Inatas/genética , Humanos , Ictiose/enzimologia , Ictiose/genética , Camundongos , Camundongos Knockout , Oxirredutases/genética
15.
J Biol Chem ; 294(23): 9225-9238, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-31061099

RESUMO

Eicosanoids are critical mediators of fever, pain, and inflammation generated by immune and tissue cells. We recently described a new bioactive eicosanoid generated by cyclooxygenase-1 (COX-1) turnover during platelet activation that can stimulate human neutrophil integrin expression. On the basis of mass spectrometry (MS/MS and MS3), stable isotope labeling, and GC-MS analysis, we previously proposed a structure of 8-hydroxy-9,11-dioxolane eicosatetraenoic acid (DXA3). Here, we achieved enzymatic synthesis and 1H NMR characterization of this compound with results in conflict with the previously proposed structural assignment. Accordingly, by using LC-MS, we screened autoxidation reactions of 11-hydroperoxy-eicosatetraenoic acid (11-HpETE) and thereby identified a candidate sharing the precise reverse-phase chromatographic and MS characteristics of the platelet product. We optimized these methods to increase yield, allowing full structural analysis by 1H NMR. The revised assignment is presented here as 8,9-11,12-diepoxy-13-hydroxyeicosadienoic acid, abbreviated to 8,9-11,12-DiEp-13-HEDE or DiEpHEDE, substituted for the previous name DXA3 We found that in platelets, the lipid likely forms via dioxolane ring opening with rearrangement to the diepoxy moieties followed by oxygen insertion at C13. We present its enzymatic biosynthetic pathway and MS/MS fragmentation pattern and, using the synthetic compound, demonstrate that it has bioactivity. For the platelet lipid, we estimate 16 isomers based on our current knowledge (and four isomers for the synthetic lipid). Determining the exact isomeric structure of the platelet lipid remains to be undertaken.


Assuntos
Plaquetas/metabolismo , Eicosanoides/química , Ácidos Hidroxieicosatetraenoicos/química , Cromatografia Líquida de Alta Pressão , Ciclo-Oxigenase 1/metabolismo , Eicosanoides/análise , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Ácidos Hidroxieicosatetraenoicos/análise , Ácidos Hidroxieicosatetraenoicos/síntese química , Isomerismo , Espectroscopia de Ressonância Magnética , Conformação Molecular , Espectrometria de Massas em Tandem
16.
Protein Sci ; 28(5): 920-927, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30861228

RESUMO

The regio- and stereo-specific oxygenation of polyunsaturated fatty acids is catalyzed by lipoxygenases (LOX); both Fe and Mn forms of the enzyme have been described. Structural elements of the Fe and Mn coordination spheres and the helical catalytic domain in which the metal center resides are highly conserved. However, animal, plant, and microbial LOX each have distinct features. We report five crystal structures of a LOX from the fungal plant pathogen Fusarium graminearum. This LOX displays a novel amino terminal extension that provides a wrapping domain for dimerization. Moreover, this extension appears to interfere with the iron coordination sphere, as the typical LOX configuration is not observed at the catalytic metal when the enzyme is dimeric. Instead novel tetra-, penta-, and hexa-coordinate Fe2+ ligations are apparent. In contrast, a monomeric structure indicates that with repositioning of the amino terminal segment, the enzyme can assume a productive conformation with the canonical Fe2+ coordination sphere.


Assuntos
Fusarium/enzimologia , Ferro/metabolismo , Lipoxigenases/química , Lipoxigenases/metabolismo , Manganês/metabolismo , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Fusarium/química , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Especificidade por Substrato
17.
J Invest Dermatol ; 139(4): 760-768, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30471252

RESUMO

The corneocyte lipid envelope (CLE), a monolayer of ω-hydroxyceramides whose function(s) remain(s) uncertain, is absent in patients with autosomal recessive congenital ichthyoses with mutations in enzymes that regulate epidermal lipid synthesis. Secreted lipids fail to transform into lamellar membranes in certain autosomal recessive congenital ichthyosis epidermis, suggesting the CLE provides a scaffold for the extracellular lamellae. However, because cornified envelopes are attenuated in these autosomal recessive congenital ichthyoses, the CLE may also provide a scaffold for subjacent cornified envelope formation, evidenced by restoration of cornified envelopes after CLE rescue. We provide multiple lines of evidence that the CLE originates as lamellar body-limiting membranes fuse with the plasma membrane: (i) ABCA12 patients and Abca12-/- mice display normal CLEs; (ii) CLEs are normal in Netherton syndrome, despite destruction of secreted LB contents; (iii) CLEs are absent in VSP33B-negative patients; (iv) limiting membranes of lamellar bodies are defective in lipid-synthetic autosomal recessive congenital ichthyoses; and (v) lipoxygenases, lipase activity, and LIPN co-localize within putative lamellar bodies.


Assuntos
DNA/genética , Eritrodermia Ictiosiforme Congênita/genética , Metabolismo dos Lipídeos/genética , Lipídeos/genética , Mutação , Pele/metabolismo , Animais , Análise Mutacional de DNA , Humanos , Eritrodermia Ictiosiforme Congênita/metabolismo , Eritrodermia Ictiosiforme Congênita/patologia , Pele/patologia
18.
Gen Comp Endocrinol ; 267: 128-136, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29940184

RESUMO

This study tested the hypothesis that blood-borne prostaglandin F2α (PGF2α) produced at the time of ovulation by female goldfish, a typical scramble-spawning, egg-laying cyprinid fish, functions as a hormone which stimulates female sexual receptivity, behavior, and pheromone release, thereby synchronizing female mating behavior with egg availability. We conducted 5 experiments. First, we tested whether PGF2α is found in the blood of female fish and if it increases at the time of ovulation. Using gas chromatography-mass spectrometry, we found that circulating PGF2α was approximately 1 ng/ml prior to ovulation, increased over 50-fold within 3 h of ovulation and returned to preovulatory values after spawning and egg release. Ovulated fish also released over 2 ng/h of PGF2α and 800 ng/h of 15-keto-PGF2α, a metabolite of PGF2α - both compounds with known pheromonal function. Second, we tested how closely levels of circulating PGF2α tracked the timing of ovulation by sampling fish at the time of ovulation and discovered that PGF2α increased within 15 min of ovulation, peaked after 9 h, and fell to basal levels as fish spawned and released their eggs. Third, we tested whether an interaction between eggs and the reproductive tract serves as a source of circulating PGF2α and its relationship with female sexual receptivity by injecting ovulated eggs (or an egg-substitute) into the reproductive tract of females stripped of ovulated eggs. We found both of these treatments elicited measurable increases in plasma PGF2α as well as female sexual behavior. A fourth experiment showed that indothemacin, a PG synthase inhibitor, blocked both PGF2α increase and female sexual behavior in egg-substitute-injected fish. Finally, we tested the relationship between the expression of female behavior and PGF2α in PGF2α-injected fish and found that circulating PGF2α levels closely paralleled behavior, rising within 15 min and peaking at 45 min. Together, these experiments establish that PGF2α functions as a behavioral blood-borne hormone in the goldfish, suggesting it likely has similar activity in other related, externally-fertilizing fishes.


Assuntos
Dinoprosta/análogos & derivados , Dinoprosta/sangue , Carpa Dourada/sangue , Carpa Dourada/fisiologia , Ovulação/sangue , Comportamento Sexual Animal/fisiologia , Animais , Feminino , Indometacina/farmacologia , Oviposição/efeitos dos fármacos , Óvulo/efeitos dos fármacos , Óvulo/metabolismo , Reprodução/efeitos dos fármacos , Fatores de Tempo
19.
Methods Enzymol ; 605: 51-68, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29909837

RESUMO

Catalase-related allene oxide synthase (cAOS) is a hemoprotein that converts a specific fatty acid hydroperoxide to an unstable allene oxide intermediate at turnover rates in the order of 1000 per second. Fatty acid allene oxides are intermediates in the formation of cyclopentenone or hydrolytic products in marine systems, most notably the prostanoid-related clavulones. Although the key catalytic amino acid residues around the active site of cAOS are the same as in true catalases, cAOS does not react with hydrogen peroxide. cAOS occurs exclusively as the N-terminal domain of a naturally occurring fusion protein with a C-terminal lipoxygenase (LOX) domain that supplies the hydroperoxide substrate. In marine invertebrates, an 8R-LOX domain converts arachidonic acid to 8R-hydroperoxyeicosatetraenoic acid (8R-HPETE) and the cAOS domain forms an 8,9-epoxy allene oxide. The fusion protein from the sea whip octocoral Plexaura homomalla is the prototypical model with crystal structures of the individual domains. The cAOS (43kDa) expresses exceptionally well in Escherichia coli, with yields of up to 100mg/L. This article describes in detail expression and assay of the P. homomalla cAOS and two methods for the preparation of its 8R-HPETE substrate. Another article in this volume focuses on the P. homomalla 8R-LOX (Gilbert, Neau, & Newcomer, 2018).


Assuntos
Antozoários/metabolismo , Ensaios Enzimáticos/métodos , Hemeproteínas/metabolismo , Leucotrienos/síntese química , Lipoxigenase/metabolismo , Peroxidases/metabolismo , Animais , Ácido Araquidônico/química , Domínio Catalítico/genética , Cromatografia Líquida/instrumentação , Cromatografia Líquida/métodos , Ciclopentanos/metabolismo , Escherichia coli/metabolismo , Hemeproteínas/genética , Hemeproteínas/isolamento & purificação , Peróxido de Hidrogênio/química , Leucotrienos/metabolismo , Lipoxigenase/genética , Lipoxigenase/isolamento & purificação , Oxirredução , Peroxidases/genética , Peroxidases/isolamento & purificação , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
20.
J Lipid Res ; 59(4): 684-695, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29459481

RESUMO

Lipoxygenase (LOX)-catalyzed oxidation of the essential fatty acid, linoleate, represents a vital step in construction of the mammalian epidermal permeability barrier. Analysis of epidermal lipids indicates that linoleate is converted to a trihydroxy derivative by hydrolysis of an epoxy-hydroxy precursor. We evaluated different epoxide hydrolase (EH) enzymes in the hydrolysis of skin-relevant fatty acid epoxides and compared the products to those of acid-catalyzed hydrolysis. In the absence of enzyme, exposure to pH 5 or pH 6 at 37°C for 30 min hydrolyzed fatty acid allylic epoxyalcohols to four trihydroxy products. By contrast, human soluble EH [sEH (EPHX2)] and human or murine epoxide hydrolase-3 [EH3 (EPHX3)] hydrolyzed cis or trans allylic epoxides to single diastereomers, identical to the major isomers detected in epidermis. Microsomal EH [mEH (EPHX1)] was inactive with these substrates. At low substrate concentrations (<10 µM), EPHX2 hydrolyzed 14,15-epoxyeicosatrienoic acid (EET) at twice the rate of the epidermal epoxyalcohol, 9R,10R-trans-epoxy-11E-13R-hydroxy-octadecenoic acid, whereas human or murine EPHX3 hydrolyzed the allylic epoxyalcohol at 31-fold and 39-fold higher rates, respectively. These data implicate the activities of EPHX2 and EPHX3 in production of the linoleate triols detected as end products of the 12R-LOX pathway in the epidermis and implicate their functioning in formation of the mammalian water permeability barrier.


Assuntos
Epóxido Hidrolases/metabolismo , Compostos de Epóxi/metabolismo , Ácidos Graxos/metabolismo , Pele/metabolismo , Animais , Biocatálise , Linhagem Celular , Compostos de Epóxi/química , Ácidos Graxos/química , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Pele/patologia , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...